приведенная стоимость, понятие приведенной стоимости, метод расчета приведенной стоимости, формула приведенной стоимости, таблица приведенной стоимости

Приведенная стоимость: понятие и метод расчета

Под приведенной стоимостью понимают текущую стоимость денежных средств, которые будут получены в будущем. Приведенная стоимость – понятие, по своему значению противоположное будущей стоимости.

Если мы хотим узнать, сколько будут стоить наши инвестиции в будущем, нам придется воспользоваться концепцией будущей стоимости.

Если же мы хотим узнать, сколько денежные средства, которые мы получим в будущем, будут стоить сегодня, нам потребуется рассчитать соответствующие показатели с использованием концепции приведенной стоимости.

Приведенная стоимость: формулировка задачи

Понятие приведенной стоимости можно легко понять, попрактиковавшись на конкретных примерах.

Мы можем сформулировать в общем виде задачу, решением которой окажется рассматриваемое в настоящей статье понятие.

Наша задача будет иметь примерно такой вид: какую сумму денежных средств необходимо поместить на счет, по которому – с учетом капитализации на основе сложных процентов – начисляется n процентов, чтобы в будущем получить заранее определенную сумму денег.

В данном случае сумма денежных средств, которую мы поместим на счет сегодня, и будет являться приведенной стоимостью.

Значение n, являющееся процентной ставкой по вкладу, именуется ставкой дисконта (иногда эту величину именуют альтернативными издержками).

Важно: ставка дисконта – это ежегодная ставка доходности, на которую инвестор может рассчитывать на момент принятия инвестиционного решения.

Формула расчета приведенной стоимости

Рассмотрим простой пример. Допустим, что через год мы ожидаем получение дохода от инвестиций в размере 1000 долл.

При этом доступные нам финансовые инструменты предлагают максимальную доходность в размере 7% годовых.

Какую сумму денежных средств нам придется инвестировать, чтобы получить ожидаемый доход?

Иначе говоря, какова приведенная стоимость указанных денежных средств, дисконтированных по ставке 7%?

приведенная стоимость, понятие приведенной стоимости, метод расчета приведенной стоимости, формула приведенной стоимости, таблица приведенной стоимости
Рисунок 1. Внутри формулы расчета приведенной стоимости спрятан фактор дисконтирования

Для решения этой задачи составим простое уравнение, в котором обозначим приведенную стоимость как N. Тогда наше уравнение будет иметь вид:

N долл. * (1 + 0,07) = 1000 долл.

Решая уравнение, получим интересующее нас значение приведенной стоимости:

N долл. = 1000 долл. / (1 + 0,07) = 934,58 долл.

Полученный нами ответ означает, что сегодняшняя инвестиция в размере 934,58 долл. сроком на 1 год под 7% годовых обеспечит по истечении срока инвестирования получение дохода в размере 1000 долл.

Разумеется, приведенную стоимость можно рассчитывать и в случаях инвестирования средств на более длительный период.

Общая формула для этих случаев будет иметь следующий вид:

Nn = Sn / (1+k/100)n,

где Nn – приведенная стоимость, Sn – будущая стоимость денег в конце n-го периода, k – ставка дисконта (годовая процентная ставка), n – количество периодов инвестирования.

Например, приведенная стоимость 1000 долл., которые мы рассчитываем получить через три года в результате инвестирования, обеспечивающей доходность в размере 9% годовых, будет равна 772,18 долл.:

1000 долл. / (1 + 0,09)3 = 772,18 долл.

Таблица приведенной стоимости

Чем больше срок, для которого мы пытаемся рассчитать приведенную стоимость, тем сложнее становятся вычисления, связанные с возведением в степень дробных чисел.

Для упрощения процесса вычислений следует пользоваться уже упоминавшимися на страницах нашего сайта финансовыми таблицами либо вспомогательными вычислительными инструментами (калькуляторами, компьютерными программами).

В качестве примера приведу таблицу, содержащую факторы дисконтирования (приведения стоимости) для 1 долл.:

приведенная стоимость, понятие приведенной стоимости, метод расчета приведенной стоимости, формула приведенной стоимости, таблица приведенной стоимости
Рисунок 2. Таблица приведенной стоимости

Например, приведенная стоимость 1 долл., который предполагается получить через 3 года и который дисконтируется по ставке 9% годовых, равна 0,772 долл.

Это значение мы находим в таблице на пересечении столбца с индексом 9 и строки, соответствующей 3-ему периоду.

Чтобы узнать при тех же условиях приведенную стоимость 1000 долл., нужно 1000 долл. умножить на найденный нами фактор дисконтирования:

1000 долл. * 0,772 = 772 долл.

Полученное значение очень близко к ранее вычисленному нами точному значению – 772,18 долл.

Аналогично, приведенная стоимость 1 долл., дисконтируемого по ставке 3% годовых в течение восьми лет, равна, как следует из таблицы, 0,789 долл.

Отталкиваясь от этого значения, можно получить значения приведенной стоимости для любых сумм, дисконтируемых на тех же условиях.

Важные следствия

Анализируя нашу таблицу, можно сформулировать ряд важных следствий, связанных с понятием приведенной стоимости.

[1]. Фактор дисконтирования может быть равен 1 лишь в случае, когда ставка дисконта равна 0. Во всех остальных случаях он меньше 1.

[2]. С увеличением ставки дисконта (годовой процентной ставки) для конкретного года фактор дисконтирования уменьшается.

[3]. С увеличением срока, через который инвестор планирует получить конкретную сумму, размер приведенной стоимости (фактор дисконтирования) уменьшается.

Отмеченные особенности приведенной стоимости необходимо четко усвоить, поскольку эти знания пригодятся нам в будущем для математического обоснования целесообразности тех или иных инвестиций.

Дополнительная информация по теме представлена в статьях:
1. Расчет NPV в Excel (пример),
2. Расчет NPV: онлайн-калькулятор.

А на сегодня все. Удачных инвестиций!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *